Gaussian Process Gauss–Newton for non-parametric simultaneous localization and mapping

Author:

Tong Chi Hay1,Furgale Paul2,Barfoot Timothy D.1

Affiliation:

1. Autonomous Space Robotics Lab, University of Toronto Institute for Aerospace Studies, Toronto, ON, Canada

2. Autonomous Systems Lab, ETH Zürich, Switzerland

Abstract

In this paper, we present Gaussian Process Gauss–Newton (GPGN), an algorithm for non-parametric, continuous-time, nonlinear, batch state estimation. This work adapts the methods of Gaussian process (GP) regression to address the problem of batch simultaneous localization and mapping (SLAM) by using the Gauss–Newton optimization method. In particular, we formulate the estimation problem with a continuous-time state model, along with the more conventional discrete-time measurements. Two derivations are presented in this paper, reflecting both the weight-space and function-space approaches from the GP regression literature. Validation is conducted through simulations and a hardware experiment, which utilizes the well-understood problem of two-dimensional SLAM as an illustrative example. The performance is compared with the traditional discrete-time batch Gauss–Newton approach, and we also show that GPGN can be employed to estimate motion with only range/bearing measurements of landmarks (i.e. no odometry), even when there are not enough measurements to constrain the pose at a given timestep.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3