Fast Lidar Inertial Odometry and Mapping for Mobile Robot SE(2) Navigation

Author:

Chen Wei12,Sun Jian12

Affiliation:

1. State Key Laboratory for Strength & Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China

2. Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

This paper presents a fast Lidar inertial odometry and mapping (F-LIOM) method for mobile robot navigation on flat terrain with high real-time pose estimation, map building, and place recognition. Existing works on Lidar inertial odometry have mostly parameterized the keyframe pose as SE(3) even when the robots moved on flat ground, which complicated the motion model and was not conducive to real-time non-linear optimization. In this paper, F-LIOM is shown to be cost-effective in terms of model complexity and computation efficiency for robot SE(2) navigation, as the motions in other degrees of freedom in 3D, including roll, pitch, and z, are considered to be noise terms that corrupt the pose estimation. For front-end place recognition, the smoothness information of the feature point cloud is introduced to construct a novel global descriptor that integrates geometry and environmental texture characteristics. Experiments under challenging scenarios, including self-collected datasets and public datasets, were conducted to validate the proposed method. The experimental results demonstrated that F-LIOM could achieve competitive real-time performance in terms of accuracy compared with state-of-the-art counterparts. Our solution has significant superiority and the potential to be deployed in limited-resource mobile robot systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3