Relative continuous-time SLAM

Author:

Anderson Sean1,MacTavish Kirk1,Barfoot Timothy D.1

Affiliation:

1. Autonomous Space Robotics Lab, University of Toronto Institute for Aerospace Studies, Canada

Abstract

Appearance-based techniques for simultaneous localization and mapping (SLAM) have been highly successful in assisting robot-motion estimation; however, these vision-based technologies have long assumed the use of imaging sensors with a global shutter, which are well suited to the traditional, discrete-time formulation of visual problems. In order to adapt these technologies to use scanning sensors, we propose novel methods for both outlier rejection and batch nonlinear estimation. Traditionally, the SLAM problem has been formulated in a single-privileged coordinate frame, which can become computationally expensive over long distances, particularly when a loop closure requires the adjustment of many pose variables. Recent discrete-time estimators have shown that a completely relative coordinate framework can be used to incrementally find a close approximation of the full maximum-likelihood solution in constant time. In order to use scanning sensors, we propose moving the relative coordinate formulation of SLAM into continuous time by estimating the velocity profile of the robot. We derive the relative formulation of the continuous-time robot trajectory and formulate an estimator using temporal basis functions. A motion-compensated outlier rejection scheme is proposed by using a constant-velocity model for the random sample consensus algorithm. Our experimental results use intensity imagery from a two-axis scanning lidar; due to the sensors’ scanning nature, it behaves similarly to a slow rolling-shutter camera. Both algorithms are validated using a sequence of 6880 lidar frames acquired over a 1.1 km traversal.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3