Pressure distribution classification and segmentation of human hands in contact with the robot body

Author:

Albini Alessandro1ORCID,Cannata Giorgio1

Affiliation:

1. Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy

Abstract

This article deals with the problem of the recognition of human hand touch by a robot equipped with large area tactile sensors covering its body. This problem is relevant in the domain of physical human–robot interaction for discriminating between human and non-human contacts and to trigger and to drive cooperative tasks or robot motions, or to ensure a safe interaction. The underlying assumption used in this article is that voluntary physical interaction tasks involve hand touch over the robot body, and therefore the capability to recognize hand contacts is a key element to discriminate a purposive human touch from other types of interaction. The proposed approach is based on a geometric transformation of the tactile data, formed by pressure measurements associated to a non-uniform cloud of 3D points ( taxels) spread over a non-linear manifold corresponding to the robot body, into tactile images representing the contact pressure distribution in two dimensions. Tactile images can be processed using deep learning algorithms to recognize human hands and to compute the pressure distribution applied by the various hand segments: palm and single fingers. Experimental results, performed on a real robot covered with robot skin, show the effectiveness of the proposed methodology. Moreover, to evaluate its robustness, various types of failures have been simulated. A further analysis concerning the transferability of the system has been performed, considering contacts occurring on a different sensorized robot part.

Funder

Horizon 2020 Framework Programme

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3