From CySkin to ProxySKIN: Design, Implementation and Testing of a Multi-Modal Robotic Skin for Human–Robot Interaction

Author:

Giovinazzo Francesco1ORCID,Grella Francesco1,Sartore Marco2,Adami Manuela2,Galletti Riccardo2,Cannata Giorgio1ORCID

Affiliation:

1. Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), Università di Genova, Via all’Opera Pia 13, 16145 Genova, Italy

2. ElbaTech Srl, Via Roma 10, 57030 Marciana, Italy

Abstract

The Industry 5.0 paradigm has a human-centered vision of the industrial scenario and foresees a close collaboration between humans and robots. Industrial manufacturing environments must be easily adaptable to different task requirements, possibly taking into account the ergonomics and production line flexibility. Therefore, external sensing infrastructures such as cameras and motion capture systems may not be sufficient or suitable as they limit the shop floor reconfigurability and increase setup costs. In this paper, we present the technological advancements leading to the realization of ProxySKIN, a skin-like sensory system based on networks of distributed proximity sensors and tactile sensors. This technology is designed to cover large areas of the robot body and to provide a comprehensive perception of the surrounding space. ProxySKIN architecture is built on top of CySkin, a flexible artificial skin conceived to provide robots with the sense of touch, and arrays of Time-of-Flight (ToF) sensors. We provide a characterization of the arrays of proximity sensors and we motivate the design choices that lead to ProxySKIN, analyzing the effects of light interference on a ToF, due to the activity of other sensing devices. The obtained results show that a large number of proximity sensors can be embedded in our distributed sensing architecture and incorporated onto the body of a robotic platform, opening new scenarios for complex applications.

Funder

SESTOSENSO

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3