An impact dynamics model and sequential optimization to generate impact motions for a humanoid robot

Author:

Konno Atsushi1,Myojin Tomoya1,Matsumoto Takaaki1,Tsujita Teppei1,Uchiyama Masaru1

Affiliation:

1. Department of Aerospace Engineering, Tohoku University, Sendai, Japan

Abstract

When a human needs to generate a large force, they will try to apply an impulsive force with dynamic cooperation of the whole body. In this paper we first discuss impact dynamics of humanoid robots and then propose a way to generate impact motions for a humanoid robot to exert a large force while keeping a balance. In the impact motion generation, Sequential Quadratic Programming (SQP) is used to solve a non-linear programming problem in which an objective function and constraints may be non-linear functions of the motion parameters. Impact motions are generated using SQP so that the impact force is maximized while the angular momentum is minimized. Breaking wooden boards with a Karate chop is taken as a case study because it is a typical example of tasks that utilize impulsive force. A humanoid robot motion for the Karate chop is generated by the proposed method. In order to validate the designed motion, experiments are carried out using a small humanoid robot Fujitsu HOAP-2. The Karate-chop motion generated by the proposed method is compared with the motion designed by a human. The results of breaking the wooden boards experiments clearly show the effectiveness of the proposed method.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3