Batting an in-flight object to the target

Author:

Jia Yan-Bin1,Gardner Matthew1,Mu Xiaoqian1

Affiliation:

1. Department of Computer Science, Iowa State University, Ames, IA, USA

Abstract

Striking a flying object such as a ball to some target location is a highly skillful maneuver that a human being has to learn through a great deal of practice. In robotic manipulation, precision batting remains one of the most challenging tasks in which computer vision, modeling, planning, control, and action must be tightly coordinated in a split second. This paper investigates the problem of a two-degree-of-freedom robotic arm intercepting an object in free flight and redirecting it to some target with a single strike, assuming all the movements take place in one vertical plane. Two-dimensional impact is solved under Coulomb friction and energy-based restitution with a proof of termination. Planning combines impact dynamics and projectile flight mechanics with manipulator kinematics and image-based motion estimation. As the object is on the incoming flight, the post-impact task constraint of reaching the target is propagated backward in time, while the arm’s kinematic constraints are propagated forward (via joint trajectory interpolation), all to the pre-impact instant when they will meet constraints that allow batting to happen. All the constraints (16 in total) are then exerted on the arm’s pre-impact joint angles and velocities, which are repeatedly planned based on updated estimates of the object’s motion captured by a high-speed camera. The arm keeps adjusting its motion in sync with planning until batting takes place. Experiments have demonstrated a better batting performance by a Barrett Technology WAM Arm than by a human being without training.

Funder

Division of Information and Intelligent Systems

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Determining predictable strike points on tossed objects: A 2D physics simulation approach;Engineering Applications of Artificial Intelligence;2024-01

2. EVOLVER: Online Learning and Prediction of Disturbances for Robot Control;IEEE Transactions on Robotics;2024

3. Trajectory Tracking of Variable Centroid Objects Based on Fusion of Vision and Force Perception;IEEE Transactions on Cybernetics;2023-12

4. Impact-aware task-space quadratic-programming control;The International Journal of Robotics Research;2023-10-16

5. A Unified Trajectory Generation Algorithm for Dynamic Dexterous Manipulation;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3