Experimental realisation of predefined diesel combustion processes using advanced closed-loop combustion control and injection rate shaping

Author:

Hinkelbein Jan1,Kremer Florian2,Lamping Matthias1,Körfer Thomas1,Schaub Joschka2,Pischinger Stefan2

Affiliation:

1. FEV GmbH, Aachen, Germany

2. Institute for Combustion Engines, RWTH Aachen University, Germany

Abstract

In this paper, a combustion control algorithm is presented that, in combination with rate shaping, allows closed-loop control of a cylinder pressure trace. Given this system, it is possible to control the behaviour of the entire combustion process. The paper starts with an explanation of the control algorithm that was developed based on iterative learning control. Consequently, the so-called α-process, which comprises a constant pressure rise, is presented as an example of the additional degrees of freedom gained. Based on the exact analysis of experimental results and combustion simulations, the effects of a peak pressure limitation on the emission behaviour of a single-cylinder engine powered by an α-process are analysed in detail. The capability of the developed control system to isolate certain effects of ideal combustion processes gives a wide range of possible further investigations. However, for practical applications, the use of injection rate shaping is coupled with high hardware costs. Therefore, an additional concept study regarding the possible realisation of the developed control system with a conventional common-rail injector is presented. In this study, it is shown that injectors without rate-shaping capabilities are able to solve the feedback control problem through multiple injection strategies.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3