Advanced model-based closed-loop combustion control strategies with combustion rate shaping

Author:

Srivastava Vivek1ORCID,Schaub Joschka2,Pischinger Stefan1

Affiliation:

1. Chair of Thermodynamics of Mobile Energy Conversion Systems (TME), RWTH Aachen University, Aachen, Germany

2. FEV Europe GmbH, Aachen, Nordrhein-Westfalen, Germany

Abstract

Combustion rate shaping (CRS) is an advanced closed-loop concept which controls the crank-angle resolved combustion trace by adapting the fuel injection profile. The thermodynamic potential of this concept to enable real-time combustion control independent of fuel property variations, injector drift, cylinder tolerances, or changing air-path boundary conditions has already been demonstrated. The highest benefit of this control concept is achieved when it is directly applied on the engine control unit (ECU) in combination with an in-cylinder pressure measurement. This enables online optimization and adaption of the fuel- and air-path settings to the fuel used during vehicle operation. Therefore, the development of a CRS concept with real-time capability has been the main focus so far. To ensure a robust online real-time combustion control, a key development step was the identification of control variables that describe the entire combustion process and only minimally influence each other. For this purpose, the combustion phasing, the combustion gradient and the indicated mean effective pressure have been determined as parameters for the feedback control. However, the stringent requirements for higher efficiencies, emission robustness and combustion noise necessitate the extension of the CRS control concept. Therefore, in this work, the CRS control concept is extended with the aim of realizing a combustion with constant volume pressure increase to the peak firing pressure limit to achieve highest efficiency. In addition, intelligent control of the fuel injection profile is to be used to achieve a combustion temperature for lowest possible NOx raw emissions and a robust combustion noise excitation limitation. The optimized control strategy is implemented on a heavy-duty single cylinder engine test bench using a Rapid Control Prototyping (RCP) system, and the control performance is demonstrated.

Funder

German Federal Ministry of Economics and Energy

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Reference48 articles.

1. Achieving the Paris Climate Agreement Goals

2. European Commission. 2030 climate & energy framework, https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2030-climate-energy-framework_en (2020, accessed 1 March 2022).

3. European Commission. European vehicle emissions standards – Euro 7 for cars, vans, lorries and buses, https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12313-European-vehicle-emissions-standards-Euro-7-for-cars-vans-lorries-and-buses_en (2020, accessed 1 July 2022).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3