The impact of intake pressure on high exhaust gas recirculation low-temperature compression ignition engine combustion using borescopic imaging

Author:

Sarangi AK1ORCID,Garner CP2,McTaggart-Cowan GP3ORCID,Davy MH4ORCID,Hargrave GK2

Affiliation:

1. Indian Institute of Technology Bombay, Mumbai, India

2. Loughborough University, Loughborough, UK

3. Simon Fraser University, Surrey, BC, Canada

4. University of Oxford, Oxford, UK

Abstract

In diesel engines, high levels of exhaust gas recirculation can be used to achieve low-temperature combustion, resulting in low emission levels of both nitrogen oxides (NO x) and particulate matter. This work studied the effects of varying the intake manifold pressure on in-cylinder combustion processes and engine-out emissions from a light-duty single cylinder diesel engine under conventional and high exhaust gas recirculation low-temperature combustion regimes. The work was conducted at a part-load cruise condition of 1500 r/min and at an indicated mean effective pressure of approximately 600 kPa. Exhaust gas recirculation rates were varied between 0% and 65% at absolute intake pressures of 100–150 kPa. Very low NO x emissions were achieved (<10 ppm, ∼0.05 g/kW h) for intake oxygen mass fractions below about 11%, independent of boost pressure. Smoke emission levels were lower than for non–exhaust gas recirculation combustion at oxygen mass fractions below ∼9%, depending on the boost pressure. High intake pressures reduced fuel consumption by 15% and combustion by-product emissions by 50%–60% compared to low boost. For the low intake boost case, little visible flame was apparent through borescope imaging. At higher boost pressures, intense flame luminosity was observed within the piston bowl early in the expansion stroke. Spatially averaged soot luminosity based on photomultiplier tube data showed that peak soot luminosity was five times greater and occurred 8 °CA earlier for high boost. This work demonstrates how the combination of appropriate boost pressures and exhaust gas recirculation rates can be used to mitigate the emissions and thermal efficiency penalties of high-dilution low-temperature combustion to achieve near-zero NO x operation.

Funder

Loughborough University

Royal Academy of Engineering

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3