Arrhenius type empirical ignition delay equations based on the phenomenology of in-cylinder conditions for wide operating ranges in modern diesel engines

Author:

Sakane Yuhei1ORCID,Kanno Ryota1,Yurui Yang1,Kobashi Yoshimitsu2ORCID,Shibata Gen3ORCID,Ogawa Hideyuki3ORCID

Affiliation:

1. Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan

2. Faculty of Natural Science and Technology, Okayama University, Okayama, Japan

3. Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan

Abstract

Ignition delays were systematically measured in a DI diesel engine under wide ranging and various engine operating conditions, including engine speeds, fuel injection pressures, intake gas temperatures, intake gas pressures, and intake oxygen concentrations changed with EGR. Empirical equations to predict the ignition delay based on the Arrhenius equation with and without the Livengood-Wu integral and multiple regression analysis of the experimental results. The simple equation assuming constant conditions during the ignition delay without the Livengood-Wu integral can accurately predict the ignition delay. However, the lack of generality has remained as the fuel injection pressure is directly included in the Arrhenius equation which should contain only the chemical parameters. To improve the generality of the equation, the ignition delay was separated into the initial physical process of the fuel spray breakup and the following chemical process. The start of the Livengood-Wu integral was set at the breakup time of liquid fuel jet assuming that the chemical reactions do not occur before the fuel spray breakup, and that the physical factors are directly involved in the physical processes and indirectly in the chemical processes. The fuel spray tip dynamics based on Wakuri’s momentum theory was introduced to express the changes in the conditions in the fuel spray during the ignition delay. The ignition delay can be accurately predicted by the equation with the Livengood-Wu integral and six parameters, including the breakup time, the mass flow rates of air and fuel at the cross section of the spray tip, the oxygen partial pressure, the engine speed, and the averaged in-cylinder gas temperature. The empirical equation predicted longer ignition delays at high ignition pressure conditions, and the accuracy was improved by performing a multiple regression analysis separately at each fuel injection pressure, suggesting unknown factors varying with the fuel injection pressures.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3