The effects of exhaust gas recirculation on diesel combustion and emissions

Author:

Ladommatos N1,Abdelhalim S1,Zhao H1

Affiliation:

1. Brunel University Department of Mechanical Engineering Uxbridge, Middlesex, UK

Abstract

An investigation was conducted with the aim of identifying and quantifying the effects of exhaust gas recirculation (EGR) on diesel engine combustion and exhaust emissions. Five effects of EGR were identified and investigated experimentally: the reduction in oxygen supply to the engine, participation in the combustion process of carbon dioxide and water vapour present in the EGR, increase in the specific heat capacity of the engine inlet charge, increased inlet charge temperature and reduction in the inlet charge mass flowrate arising from the use of hot EGR. The experimental methodology developed allowed each one of these effects to be investigated and quantified separately. The investigation was carried out on a high-speed, direct injection diesel engine, running at an intermediate speed and load. A limited number of tests were also conducted in an optically accessible diesel engine, which established the effects of EGR on local flame temperature. Finally, tests were conducted with simulated EGR being used additionally to the engine air supply. This contrasts with the conventional use of EGR, whereby EGR replaces some of the air supplied to the engine. It was found that the first effect of EGR (reduction in the oxygen flowrate to the engine) was substantial and resulted in very large reductions in exhaust NOx at the expense of higher particulate emissions. The second and third effects (participation of carbon dioxide and water vapour in the combustion process and increase in the charge specific heat capacity) were almost insignificant. The fourth effect (higher inlet charge temperature) increased both exhaust NOx and particulate emissions. The fifth effect (reduction in the inlet charge due to thermal throttling) reduced NOx but raised particulate emission. Finally, when EGR was used additionally to the inlet air charge (rather than displacing air), substantial reductions in NOx were recorded with little increase in particulate emission.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3