The effects of compression ratio and combustion initiation location on knock emergence by using multiple pressure sensing devices

Author:

Uddeen Kalim1ORCID,Shi Hao1,Tang Qinglong1,Magnotti Gaetano1,Turner James1

Affiliation:

1. King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Abstract

Knock research is an essential study because knock limits spark-ignition (SI) engine power output, durability, noise, fuel consumption, and emission performance. The thermal efficiency of an engine can be improved by increasing the compression ratio, but at the same time it leads to the possibility of end gas autoignition inside the chamber. The objective of this work was to show the effect of three different compression ratios (CRs) 8.5, 9.5, and 10.5 on the mechanism of knock. In order to achieve this four equispaced spark plugs were fitted around the circumference of a special metal liner to initiate flame fronts from those plugs by firing with different spark approaches (e.g. spark timing, number, and location). In addition, six pressure sensors were installed at various locations to precisely record the autoignition event by monitoring pressure oscillations, combustion characteristics, and knock intensity. In-cylinder pressure and heat release rate (HRR) analyses were applied to distinguish the knocking combustion for the three different CRs. The results showed that a greater number of spark plugs produced more stable combustion even for a delayed spark timing (ST) than a single spark plug, but also increased pressure oscillations, HRR and knock propensity with higher CRs due to an increase in pressure and temperature inside the cylinder. The maximum amplitude of pressure oscillation (MAPO) method was used to determine the knock intensity, and it was observed that at the lowest CR of 8.5 three spark plugs gave higher MAPO values compared to four spark plugs for the same operating conditions. However, four spark plugs instigated higher MAPO values than three spark plugs for the higher CRs of 9.5 and 10.5 because, with the increase of CR and spark plug numbers, the pressure and temperature were increased during the combustion event, which was coupled with the compression effect on the unburned end gas mixture. Additionally, Fast Fourier transform (FFT) and wavelet methods were implemented to observe the frequencies induced during knock. It was found that sparking four plugs provoked various vibration modes in different amplitude ranges with the different CRs.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3