Investigation into Various Strategies to Achieve Stable Ammonia Combustion in a Spark-Ignition Engine

Author:

Uddeen Kalim1,Almatrafi Fahad1,Shi Hao2,Tang Qinglong3,Parnell Jamie4,Peckham Mark5,Turner James1

Affiliation:

1. King Abdullah University of Science & Technology

2. Cardiff University

3. Tianjin University

4. Cambustion Ltd.

5. Cambustion Ltd

Abstract

<div class="section abstract"><div class="htmlview paragraph">Ammonia (NH<sub>3</sub>) is a carbon-free fuel, which could partially or completely eliminate hydrocarbon (HC) fuel demand. Using ammonia directly as a fuel has some challenges due to its low burning speed and low flammability range, which generates unstable combustion inside the combustion chamber. This study investigated the effect of two different compression ratios (CRs) of 10.5 and 12.5 on the performance of ammonia combustion by using a conventional single spark-ignition (SI) approach. It was found that at a lower CR of 10.5, the combustion was unstable even at advanced spark timing (ST) due to poor combustion characteristics of ammonia. However, increasing the CR to 12.5 improved the engine performance significantly with lower cyclic variations. In addition, this research work also observed the effect of multiple spark ignition strategies on pure ammonia combustion and compared it with the conventional SI approach for the same operating conditions. Multiple flames were generated by four spark plugs, which were mounted at equal intervals on the periphery of a customized metal liner and one additional spark plug was fitted at the top of the cylinder head. The results illustrated that adding more spark ignition sites builds higher in-cylinder pressure and temperature, which further burned the charge rapidly. This produced higher engine efficiency, lower combustion duration, and reduced cycle-to-cycle variations. Additionally, multiple spark plugs together were used to ignite a lean case of air-fuel equivalence ratio, λ: 1.2, and compare it with the stoichiometry condition of λ: 1.0. Furthermore, a Cambustion fast NO and NO<sub>2</sub> analyzer was used to precisely record the NO and NO<sub>2</sub> concentrations during ammonia combustion. It was observed that firing multiple spark plugs produced higher NOx emissions than the single spark plug case, considered to be due to the higher in-cylinder temperature generated by the creation of multiple flame kernels.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3