Multiple Spark Ignition Approach to Burn Ammonia in a Spark-Ignition Engine: An Optical Study

Author:

Uddeen Kalim,Tang Qinglong,Shi Hao,Magnotti Gaetano,Turner James

Abstract

<div class="section abstract"><div class="htmlview paragraph">The future of the internal combustion (IC) engine relies on carbon-free fuels to mitigate climate change. Ammonia (NH<sub>3</sub>) is a promising carbon-free fuel, which can be used as an energy carrier for hydrogen (H<sub>2</sub>) and directly as a combustible fuel inside the engines. However, burning pure ammonia fuel is difficult due to its low flammability, burning velocity, and consequently large cycle-to-cycle variation. This study used a multiple-spark-plug approach to burn pure ammonia gas with reduced combustion duration and higher engine power output. The natural flame luminosity (NFL) imaging method was used to capture the multiple flames initiated by various ignition sites. In order to perform the experiment a customized liner having four spark plugs installed at equal spacing to each other, and to compare the results with conventional spark-ignition (SI) conditions, one spark plug was mounted at the center of the cylinder head. The results show that firing the single central spark plug generated lower in-cylinder pressure and heat release rate (HRR) along with higher combustion duration due to the low flame speed. However, adding more spark plugs increased the cylinder pressure generation and HRR along with creating shorter combustion duration for the same operating conditions. In addition, multiple flames produced by multiple plugs increased the engine power output and reduced the cyclic variation significantly due to higher-pressure generation. Additionally, NFL imaging was used to evaluate the flame intensity and flame area proportion for various ignition cases, and it was found that multiple spark plugs burned the air-fuel mixture more quickly with faster flame area proportion along with higher flame intensity. Furthermore, firing multiple spark plugs produced higher NOx emissions than the single spark plug case due to higher in-cylinder temperatures generated by multiple flame kernels.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3