Advantages of using a cooler bypass in the low-pressure exhaust gas recirculation line of a compression ignition diesel engine operating at cold conditions

Author:

Galindo José1ORCID,Dolz Vicente1ORCID,Monsalve-Serrano Javier1,Bernal Maldonado Miguel Angel1ORCID,Odillard Laurent2

Affiliation:

1. CMT-Motores Térmicos, Universitat Politècnica de València, Valencia, Spain

2. Systèmes Thermiques, Valeo, Paris, France

Abstract

The low efficiency of the after-treatment systems during the cold start period of the internal combustion engines leads to excessive pollutant emissions levels. To reduce the nitrogen oxide emissions at these conditions, it could be necessary to use the high- and low-pressure exhaust gas recirculation strategies, even operating at low temperatures. This article evaluates the impact of using a low-pressure exhaust gas recirculation cooler bypass in a Euro 6 turbocharged diesel engine running under cold conditions (–7 °C). A new compact line fitted with a bypass system for the cooler is used with the aim of accelerating the engine warm-up process as compared to the original low-pressure exhaust gas recirculation line. The system is evaluated following two strategies, first performing exhaust gas recirculation without bypass and then performing exhaust gas recirculation bypassing the cooler. The results show that the activation the low-pressure exhaust gas recirculation from the engine cold start leads to a significant nitrogen oxide emissions reduction. Moreover, the bypass activation leads to increase the engine intake temperature, reducing the engine warm-up time and the CO emissions due to better combustion efficiency. However, the activation of the low-pressure exhaust gas recirculation at low temperatures could produce condensation and fouling deposits on the engine components affecting their life span. These phenomena are visualized using endoscope cameras in order to identify the condensation time and the final conditions of the elements. In addition, a chemical analysis of some condensates collected during the experiments and a comparison versus other species found in the literature is presented.

Funder

Universitat Politècnica de València

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3