Characterization of temporal variations and feedback timescales of exhaust gas recirculation gas properties using high-speed diode laser absorption spectroscopy for next-cycle control of cyclic variability

Author:

Jatana Gurneesh S1,Kaul Brian C1ORCID

Affiliation:

1. Oak Ridge National Laboratory, MS6472 Oak Ridge, TN, USA

Abstract

Dilute combustion offers efficiency gains in boosted gasoline direct injection engines both through knock-limit extension and thermodynamic advantages (i.e. the effect of γ on cycle efficiency), but is limited by cyclic variability at high dilution levels. Past studies have shown that the cycle-to-cycle dynamics are a combination of deterministic and stochastic effects. The deterministic causes of cyclic variations, which arise from feedback due to exhaust gas recirculation, imply the possibility of using active control strategies for dilution limit extension. While internal exhaust gas recirculation will largely provide a next-cycle effect (short-timescale feedback), the feedback of external exhaust gas recirculation will have an effect after a delay of several cycles (long timescale). Therefore, control strategies aiming to improve engine stability at dilution limit may have to account for both short- and long-timescale feedback pathways. This study shows the results of a study examining the extent to which variations in exhaust gas recirculation composition are preserved along the exhaust gas recirculation flow path and thus the relative importance and information content of the long-timescale feedback pathway. To characterize the filtering or retention of cycle-resolved feedback information, high-speed (1–5 kHz) CO2 concentration measurements were performed simultaneously at three different locations along the low-pressure external exhaust gas recirculation loop of a four-cylinder General Motors gasoline direct injection engine using a multiplexed two-color diode laser absorption spectroscopy sensor system during steady-state and transient engine operation at various exhaust gas recirculation levels. It was determined that cycle-resolved feedback propagates through internal residual gases but is filtered out by the low-pressure exhaust gas recirculation flow system and do not reach the intake manifold. Intermediate variations driven by flow rate and compositional changes are also distinguished and identified.

Funder

Vehicle Technologies Program

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3