Real-time capable simulation of diesel combustion processes for HiL applications

Author:

Neumann Daniel1,Jörg Christian1,Peschke Nils1,Schaub Joschka2,Schnorbus Thorsten2

Affiliation:

1. Institute for Combustion Engines, RWTH Aachen University, Aachen, Germany

2. FEV GmbH, Aachen, Germany

Abstract

The complexity of the development processes for advanced diesel engines has significantly increased during the last decades. A further increase is to be expected, due to more restrictive emission legislations and new certification cycles. This trend leads to a higher time exposure at engine test benches, thus resulting in higher costs. To counter this problem, virtual engine development strategies are being increasingly used. To calibrate the complete powertrain and various driving situations, model in the loop and hardware in the loop concepts have become more important. The main effort in this context is the development of very accurate but also real-time capable engine models. Besides the correct modeling of ambient condition and driver behavior, the simulation of the combustion process is a major objective. The main challenge of modeling a diesel combustion process is the description of mixture formation, self-ignition and combustion as precisely as possible. For this purpose, this article introduces a novel combustion simulation approach that is capable of predicting various combustion properties of a diesel process. This includes the calculation of crank angle resolved combustion traces, such as heat release and other thermodynamic in-cylinder states. Furthermore, various combustion characteristics, such as combustion phasing, maximum gradients and engine-out temperature, are available as simulation output. All calculations are based on a physical zero-dimensional heat release model. The resulting reduction of the calibration effort and the improved model robustness are the major benefits in comparison to conventional data-driven combustion models. The calibration parameters directly refer to geometric and thermodynamic properties of a given engine configuration. Main input variables to the model are the fuel injection profile and air path–related states such as exhaust gas recirculation rate and boost pressure. Thus, multiple injection event strategies or novel air path control structures for future engine control concepts can be analyzed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hardware-in-the-loop Simulation System Design of Marine Diesel Engine;2023 4th International Conference on Mechatronics Technology and Intelligent Manufacturing (ICMTIM);2023-05-26

2. Arrhenius type empirical ignition delay equations based on the phenomenology of in-cylinder conditions for wide operating ranges in modern diesel engines;International Journal of Engine Research;2023-04-24

3. Advanced model-based closed-loop combustion control strategies with combustion rate shaping;International Journal of Engine Research;2023-04-07

4. Combustion rate shaping for flex-fuel applications;International Journal of Engine Research;2022-07-11

5. Adaptive in-cylinder pressure model for spark ignition engine control;Fuel;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3