Instantaneous torque, energy saving and flow rate ripple analysis of a common rail pump equipped with different delivery-pressure control systems

Author:

Ferrari Alessandro1,Vitali Ruggero1

Affiliation:

1. Department of Energy, Politecnico di Torino, Torino, Italy

Abstract

A mechanical model of a high-pressure pump of a common rail fuel injection system is presented and validated by comparison with experimental instantaneous pump shaft torque and pump piston lift data. The instantaneous torque has been measured with a high-performance torque meter installed on a hydraulic rig for testing pieces of injection apparatus. In the model, the mechanics of the piston plunger and the forces exchanged between pistons and cam are simulated, and friction losses between mobile parts are taken into account. The numerical tool is used to investigate the dynamical performance of the high-pressure pump and to analyse the impact of the rail pressure control strategy on instantaneous torque, energy saving and flow rate ripple. The rail pressure control strategy, based on the application of a fuel metering valve at the pump inlet, gives rise to an improved hydraulic efficiency of the injection system at part loads and to a moderate rate of pressure increase in the pumping chamber at part loads. However, the rail pressure control strategy based on the installation of a pressure control valve at one rail extremity leads to a reduction in the pump flow rate ripple and to a diminution in the fatigue stress. Furthermore, cavitation problems can occur during intake and early compression phases of the pump cycle when the fuel metering unit is working.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3