Abstract
The paper is devoted to the analysis of the operating cycle of a high-pressure injection pump used in common rail systems. The investigation is based on experimental activities, and it is carried out in a novel pump set-up that allows measurements of the instantaneous pressure in the piston working chamber. A single plunger pump has been equipped with a piezo-resistive pressure transducer which allows for the measurement of the pressure signal during pump operation on a test rig. The paper describes the experimental set-up, the modified injection pump equipped with the pressure transducer, and the experimental tests carried out. Main results obtained using a standard commercial diesel fuel are discussed at first; secondly, the focus moves on to the use of an alternative fuel (biodiesel) whose features in terms of bulk modulus, viscosity, and density significantly differ from the reference fuel. Based on the characteristics of the pump operating cycle, the fuel suction and delivery processes are analyzed, pointing out how the used fuel type is reflected on them. The investigations are aimed at describing the operating characteristics of the pump, focusing the attention on those features playing a fundamental role on the global efficiency of the pump. The amplitudes of the pump-work phases, the ranges of pressure fluctuations, and the pressure-rise rates are quantified and reported, providing crucial indications for lumped parameter modeling and design activities in the field of current generation high-pressure injection pumps.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献