Computational optimization of reactivity controlled compression ignition combustion to achieve high efficiency and clean combustion

Author:

Jain Avilash1,Krishnasamy Anand1ORCID,V Pradeep1

Affiliation:

1. Indian Institute of Technology Madras, Chennai, India

Abstract

One of the major limitations of reactivity controlled compression ignition is higher unburned hydrocarbon and carbon monoxide emissions and lower thermal efficiency at part load operating conditions. In the present study, a combined numerical approach using a commercial three-dimensional computational fluid dynamics code CONVERGE along with artificial neural network and genetic algorithm is presented to address the above limitation. A production light-duty diesel engine is modified to run in reactivity controlled compression ignition by replacing an existing mechanical fuel injection system with a flexible electronic port fuel injection and common rail direct injection systems. The injection schedules of port fuel injection and direct injection injectors are controlled using National Instruments port and direct injection driver modules. Upon validation of combustion and emission parameters, parametric investigations are carried out to establish the effects of direct-injected diesel fuel timing start of injection (SOI), premixed fuel ratio and intake charge temperature on the engine performance and emissions in reactivity controlled compression ignition. The results obtained show that the start of injection timing and intake charge temperature significantly influence combustion phasing, while the premixed fuel ratio controls mixture reactivity and combustion quality. By utilizing the data generated with the validated computational fluid dynamics models, the artificial neural network models are trained to predict the engine exhaust emissions and efficiency. The artificial neural network models for gross indicated efficiency and oxides of nitrogen (NOx) are then coupled with genetic algorithm to maximize gross indicated efficiency while keeping the NOx and soot emissions within Euro VI emission limits. By optimizing the start of injection timing, premixed fuel ratio and intake charge temperature simultaneously using the artificial neural network models coupled with genetic algorithm, 19% improvement in gross indicated efficiency, 60% and 64% reduction in hydrocarbon and carbon monoxide emissions, respectively, are obtained in reactivity controlled compression ignition compared to the baseline case.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3