Exploring the visual distinguishability and topic autocorrelation of murals unearthed in China from the spatial perspective

Author:

Sun Shouqiang1ORCID,Zeng Ziming2,Li Qingqing1ORCID

Affiliation:

1. School of Information Management, Wuhan University, China

2. Center for Studies of Information Resources, Wuhan University, China; School of Information Management, Wuhan University, China

Abstract

Murals unearthed in China have outstanding regional characteristics and one of the largest period spans in scale and variety. To explore the visual distinguishability and topic autocorrelation of murals unearthed in China from the spatial perspective, multiple classification models are employed to classify murals unearthed in China through visual features. Then, the k-means is employed to mine topics, and they are analysed through topic intensities (TIs), Moran’s Index (MI) and spatial topic concentration degrees (STCDs). In addition, the characteristics of topic distribution and evolution are summarised and revealed in the spatial dimension. From a spatial perspective, it verifies the distinguishability of visual features of murals through ViT_BOW_GNB, and the precision of this model is 98.17%. Thirteen topics are clustered through k-means, and the distribution of mural topics is spatial autocorrelation according to MI. Besides, the topic evolves from the political centre to the surrounding area, and the topics with high intensities are highly concentrated in spatial. This study reveals the spatial characteristics of the mural at the level of visual features and semantics, which facilitates the digital management, conservation and knowledge discovery of cultural heritage resources.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3