Preparation of Highly Crystalline Nano Ca(OH)2 and Its Comparative Assessment with Commonly Used Materials for the Protection of Wall Paintings

Author:

Zhao Ting1,Ding Nian‐Chen1,Guo Rui1,Fang Yuan1,Zhu Jian‐Feng1,Yang Wen‐Zong12,Qin Yi1

Affiliation:

1. Key Laboratory of Materials and Technology for Unearthed Cultural Heritage Conservation Ministry of Education School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an Shaanxi 710021 China

2. Scientific Research Base of Conservation & Restoration for Mural as Collection and Materials Science in State Administration for Cultural Heritage Xi'an 710061 China

Abstract

AbstractDue to the ecocompatibility with carbonate‐based substrates, Ca(OH)2 nanoparticles are currently used for cultural heritage conservation such as wall paintings. However, the nano Ca(OH)2 still suffers from different forms and poor uniformity, limiting its application potential. Also, there is a lack of systematic comparative studies between nano Ca(OH)2 and the commonly used wall painting reinforcement materials. In this study, homogeneous hexagonal nano Ca(OH)2 particles with a size of ≈100 nm are successfully prepared through the convenient chemical liquid phase method and by utilizing surfactants to control the growth. The resulting nano Ca(OH)2 is less agglomerated and has superior crystalline morphology, prolonged suspension time, and more suitable carbonation time in comparison to commercial Ca(OH)2 materials. Additionally, the reinforcement effect of the resulting nano‐Ca(OH)2 with that of the commonly used pigment layer reinforcement materials such as AC33, B72, Tetraethyl orthosilicate, WPU (Waterborne polyurethane) and commercial Ca(OH)2 is systematically compared. The synthesized nano Ca(OH)2 penetrated wall painting blocks to a depth of 683 µm, three times deeper than commercial Ca(OH)2, achieving moderate color deviation, higher flexural strength (0.529 MPa), and bond strength (1.105 mg cm−2), thus highlighting its potential in wall painting reinforcement and expanding its application scope.

Funder

Natural Science Basic Research Program of Shaanxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3