Artificial Intelligence for Dunhuang Cultural Heritage Protection: The Project and the Dataset

Author:

Yu Tianxiu,Lin Cong,Zhang Shijie,Wang Chunxue,Ding Xiaohong,An Huili,Liu Xiaoxiang,Qu Ting,Wan Liang,You ShaodiORCID,Wu Jian,Zhang Jiawan

Abstract

AbstractIn this work, we introduce our project on Dunhuang cultural heritage protection using artificial intelligence. The Dunhuang Mogao Grottoes in China, also known as the Grottoes of the Thousand Buddhas, is a religious and cultural heritage located on the Silk Road. The grottoes were built from the 4th century to the 14th century. After thousands of years, the in grottoes decaying is serious. In addition, numerous historical records were destroyed throughout the years, making it difficult for archaeologists to reconstruct history. We aim to use modern computer vision and machine learning technologies to solve such challenges. First, we propose to use deep networks to automatically perform the restoration. Through out experiments, we find the automated restoration can provide comparable quality as those manually restored from an archaeologist. This can significantly speed up the restoration given the enormous size of the historical paintings. Second, we propose to use detection and retrieval for further analyzing the tremendously large amount of objects because it is unreasonable to manually label and analyze them. Several state-of-the-art methods are rigorously tested and quantitatively compared in different criteria and categorically. In this work, we created a new dataset, namely, AI for Dunhuang, to facilitate the research. Version v1.0 of the dataset comprises of data and label for the restoration, style transfer, detection, and retrieval. Specifically, the dataset has 10,000 images for restoration, 3455 for style transfer, and 6147 for property retrieval. Lastly, we propose to use style transfer to link and analyze the styles over time, given that the grottoes were build over 1000 years by numerous artists. This enables the possibly to analyze and study the art styles over 1000 years and further enable future researches on cross-era style analysis. We benchmark representative methods and conduct a comparative study on the results for our solution. The dataset will be publicly available along with this paper.

Funder

Key Technologies Research and Development Program

Young Scientists Fund

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3