HOMPer: A new hybrid system for opinion mining in the Persian language

Author:

Basiri Mohammad Ehsan1ORCID,Kabiri Arman1

Affiliation:

1. Department of Computer Engineering, Shahrekord University, Iran

Abstract

Opinion mining is a subfield of data mining and natural language processing that concerns with extracting users’ opinion and attitude towards products or services from their comments on the Web. Persian opinion mining, in contrast to its counterpart in English, is a totally new field of study and hence, it has not received the attention it deserves. Existing methods for opinion mining in the Persian language may be classified into machine learning– and lexicon-based approaches. These methods have been proposed and successfully used for polarity-detection problem. However, when they should be used for more complex tasks like rating prediction, their results are not desirable. In this study, first an exhaustive investigation of machine learning– and lexicon-based methods is performed. Then, a new hybrid method is proposed for rating-prediction problem in the Persian language. Finally, the effect of machine learning component, feature-selection method, normalisation method and combination level are investigated. The experimental results on a large data set containing 16,000 Persian customers’ review show that this proposed system achieves higher performance in comparison to Naïve Bayes algorithm and a pure lexicon-based method. Moreover, results demonstrate that this proposed method may also be successfully used for polarity detection.

Funder

shahrekord university

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Deep Learning Approach for Twitter Sentiment Analysis using ULM-SVM;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28

2. Ethereum Public Opinion Analysis Based on Attention Mechanism;Lecture Notes in Computer Science;2024

3. Enhancing Sentiment Analysis Using MCNN-BRNN Model with BERT;2023 3rd International Conference on Electronic Information Engineering and Computer Communication (EIECC);2023-12-22

4. Predicting sentiment analysis for Web users with a deep learning approach;2023 IEEE Tenth International Conference on Communications and Networking (ComNet);2023-11-01

5. Deep aspect extraction and classification for opinion mining in e‐commerce applications using convolutional neural network feature extraction followed by long short term memory attention model;Applied AI Letters;2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3