Deep aspect extraction and classification for opinion mining in e‐commerce applications using convolutional neural network feature extraction followed by long short term memory attention model

Author:

Sharbatian Kamal1,Moattar Mohammad Hossein2ORCID

Affiliation:

1. Department of Computer Engineering Urmia University of Technology Urmia Iran

2. Department of Computer Engineering, Mashhad Branch Islamic Azad University Mashhad Iran

Abstract

AbstractUsers of e‐commerce websites review different aspects of a product in the comment section. In this research, an approach is proposed for opinion aspect extraction and recognition in selling systems. We have used the users' opinions from the Digikala website (www.Digikala.com), which is an Iranian e‐commerce company. In this research, a language‐independent framework is proposed that is adjustable to other languages. In this regard, after necessary text processing and preparation steps, the existence of an aspect in an opinion is determined using deep learning algorithms. The proposed model combines Convolutional Neural Network (CNN) and long‐short‐term memory (LSTM) deep learning approaches. CNN is one of the best algorithms for extracting latent features from data. On the other hand, LSTM can detect latent temporal relationships among different words in a text due to its memory ability and attention model. The approach is evaluated on six classes of opinion aspects. Based on the experiments, the proposed model's accuracy, precision, and recall are 70%, 60%, and 85%, respectively. The proposed model was compared in terms of the above criteria with CNN, Naive Bayes, and SVM algorithms and showed satisfying performance.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3