Exploiting reviewers’ comment histories for sentiment analysis

Author:

Basiri Mohammad Ehsan1,Ghasem-Aghaee Nasser1,Naghsh-Nilchi Ahmad Reza1

Affiliation:

1. Faculty of Computer Engineering and Information Technology, University of Isfahan, Iran

Abstract

Sentiment analysis is used to extract people’s opinion from their online comments in order to help automated systems provide more precise recommendations. Existing sentiment analysis methods often assume that the comments of any single reviewer are independent of each other and so they do not take advantage of significant information that may be extracted from reviewers’ comment histories. Using psychological findings and the theory of negativity bias, we propose a method for exploiting reviewers’ comment histories to improve sentiment analysis. Furthermore, to use more fine-grained information about the content of a review, our method predicts the overall ratings by aggregating sentence-level scores. In the proposed system, the Dempster–Shafer theory of evidence is utilized for score aggregation. The results from four large and diverse social Web datasets establish the superiority of our approach in comparison with the state-of-the-art machine learning techniques. In addition, the results show that the suggested method is robust to the size of training dataset.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3