Predicting the Mechanism of the Analgesic Property of Yanhusuo Based on Network Pharmacology

Author:

Xiao Wen-Ping12,Yang Yan-Fang1,Wu He-Zhen1,Xiong Yi-yi1

Affiliation:

1. Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China

2. Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Hubei Province, China

Abstract

Yanhusuo (Corydalis Rhizoma) extracts are widely used for the treatment of pain and inflammation. The effects of Yanhusuo in pain assays were assessed in a few studies. However, there are few studies on its analgesic mechanism. In this paper, network pharmacology was used to explore the analgesic components of Yanhusuo and its analgesic mechanism. The active components of Yanhusuo were screened by TCMSP database, combined with literature data. PharmMapper and GeneCards databases were used for screening the analgesic targets of the components. The protein interaction network diagram was drawn by String database and Cytoscape software, the gene ontology and KEGG pathway analyses of the target were performed by DAVID database, and the component–target–pathway interaction network diagram was further drawn by Cytoscape3.6.1 software. System Dock Web Site verified the molecular docking among components and targets. Finally, an interaction network of the component–target–pathway of Yanhusuo was constructed, and the functions and pathways were analyzed for preliminarily investigating the mechanism of Yanhusuo in analgesia. The results showed that the active components of analgesic in Yanhusuo were Corynoline, 13-methylpalmatrubine, dehydrocorydaline, saulatine, 2,3,9,10-tetramethoxy-13-methyl-5,6-dihydroisoquinolino[2,1-b]isoquinolin-8-on-e, and Capaurine. The mechanisms were involved in metabolic pathways, PI3k-Akt signaling pathway, pathways in cancer, and so on. The top 3 targets were NOS3, glucose-6-phosphate dehydrogenase, and glucose-6-phosphate isomerase in components-target-pathways network, and they were all enriched in metabolic pathways. Meanwhile the molecular docking showed that there was a high binding activity between the 6 components and the important target proteins, as a further certification for the subsequent network analysis. This study reveals the relationship of the components, targets, and pathways of active components in Yanhusuo, and provides new ideas and methods for further research on the analgesic mechanism of Yanhusuo.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3