Injection-molded lightweight and high electrical conductivity composites with microcellular structure and hybrid fillers

Author:

Tian Sheng1ORCID,Dong Binbin1,Guo Yahao1,Zhao Can1,Zhang Mengxia1,Xiao Mengjun1ORCID

Affiliation:

1. National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Henan, China

Abstract

Polypropylene/carbon black (PP/CB) and PP/CB/multiwalled carbon nanotube (PP/CB/MWCNT) composites were fabricated by solid and foam injection molding, with the goal of enhancing the electrical conductivity of the composites while decreasing the cost of the final product. The foaming behavior and through-plane (T-P) electrical conductivity of the composites were characterized and analyzed. Cell growth increased the interconnection of the conductive fillers, changed the filler orientation, and enhanced the T-P electrical conductivity of the composites. Under appropriate processing conditions (200°C melt temperature, 70 cm3/s injection flow rate, and 5% void fraction), the T-P electrical conductivity of the foam PP/CB composites was 5 orders of magnitude higher than that of the solid composites (from 5.877 × 10−12 S/m to 1.010 × 10−7 S/m). Moreover, the T-P electrical conductivity values of the PP/CB and PP/CB/MWCNT were compared at the same conductive fillers content (15 wt%). The results showed that the T-P electrical conductivity of the PP/CB/MWCNT composites was far higher than that of the PP/CB composites by almost five orders of magnitude because the MWCNT acted as a bridge between CB particles, and a unique geometric shape was formed in the system. The T-P electrical conductivity of the foam PP/CB/MWCNT composites with 15 wt% carbon fillers was higher than that of the solid PP/CB composites with 20 wt% carbon fillers. This study reveals that the effect of foaming and the addition of hybrid fillers can improve the T-P electrical conductivity of plastic products, which is very important for the development of lightweight conductive plastics.

Funder

National Natural Science Foundation Item

Publisher

SAGE Publications

Subject

Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3