Author:
Zhao Bowei,Sun Tai,Zhou Xi,Liu Xiangzhi,Li Xiaoxia,Zhou Kai,Dong Lianhe,Wei Dapeng
Abstract
Combining functional nanomaterials composite with three-dimensional graphene (3DG) is a promising strategy for improving the properties of stress sensors. However, it is difficult to realize stress sensors with both a wide measurement range and a high sensitivity. In this paper, graphene-SiO2 balls (GSB) were composed into 3DG in order to solve this problem. In detail, the GSB were prepared by chemical vapor deposition (CVD) method, and then were dispersed with graphene oxide (GO) solution to synthesize GSB-combined 3DG composite foam (GSBF) through one-step hydrothermal reduction self-assembly method. The prepared GSBF owes excellent mechanical (95% recoverable strain) and electrical conductivity (0.458 S/cm). Furthermore, it exhibits a broad sensing range (0–10 kPa) and ultrahigh sensitivity (0.14 kPa−1). In addition, the water droplet experiment demonstrates that GSBF is a competitive candidate of high-performance materials for stress sensors.
Funder
the Natural Science Foundation of Chongqing
Youth Innovation Promotion Association of CAS
Subject
General Materials Science,General Chemical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献