Nanoparticles Surface Energy Effect on Mechanical Properties and Microscopic Deformation of 3D Heterogeneous Nanostructures

Author:

Bilal Khan Muhammad1,Mustafa Azeem M.2,Qasim Zafar Muhammad13ORCID,Hussain Ghulam4

Affiliation:

1. Faculty of Mechanical Engineering, Ghulam Ishaq, Khan Institute of Engineering, Sciences and Technology, Topi, Swabi 23640 KP, Pakistan

2. Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, United States

3. State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China

4. Mechanical Engineering Department, College of Engineering, University of Bahrain, Isa Town 32038, Bahrain

Abstract

Nanoparticle-contained graphene foam material has attracted many practical applications in recent years, which require an in-depth comprehension of the basic mechanics of these heterogenous materials. In this paper, the effect of nanoparticles surface energy on the mechanical properties of nanoparticle-filled graphene foam under uniaxial tension and compression is systematically studied by the coarse-grained molecular dynamics simulation method. The mechanical strength of these nanoparticle-filled graphene foam is directly influenced by tuning the nanoparticles surface energy. The varying peeling-off behaviors of graphene sheets influenced by the surface energy of nanoparticles are observed. The stress distribution under uniaxial compression and tension at different nanoparticles surface energy is also studied. The mechanical behavior of nanoparticle-filled graphene foam is directly dependent on nanoparticles surface energy. The results should be helpful not only to understand the micro mechanism of such nanomaterials, but also to the design of advanced composites and devices based on porous materials mixed with particles.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3