Assessing the Effects of Deep Learning Reconstruction on Abdominal CT Without Arm Elevation

Author:

Fujita Nana1ORCID,Yasaka Koichiro1ORCID,Katayama Akira12ORCID,Ohtake Yuta1ORCID,Konishiike Mao1,Abe Osamu1ORCID

Affiliation:

1. Department of Radiology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan

2. Department of Radiology, Tokyo-Kita Medical Centre, Kita-ku, Tokyo, Japan

Abstract

Purpose: To evaluate the effects of deep learning reconstruction (DLR) on image quality of abdominal computed tomography (CT) in patients without arm elevation compared with hybrid-iterative reconstruction (Hybrid-IR) and filtered back projection (FBP). Methods: In this retrospective study, axial images of 26 patients who underwent CT without arm elevation were reconstructed using DLR, Hybrid-IR, and FBP. Streak artifact index (SAI) was calculated by dividing the standard deviation of CT attenuation in the liver or spleen by that in fat. Two other blinded radiologists evaluated streak artifacts on images (in the liver, spleen, and kidney), depiction of liver vessels, subjective image noise, and overall quality. They were also asked to detect space-occupying lesions other than cysts in the liver, spleen, and kidney. Results: The SAI (liver/spleen) in DLR images was significantly reduced compared with Hybrid-IR and FBP. Regarding qualitative image analysis, streak artifacts in the 3 organs, qualitative image noise, and overall quality in DLR images were rated by both readers as significantly improved compared with Hybrid-IR ( P ≤ .012) and FBP ( P < .001). Both blinded readers detected more lesions on DLR images than on Hybrid-IR and FBP ones. Conclusion: DLR resulted in significantly better-quality abdominal CT images in patients scanned without elevating their arms with reducing streak artifacts compared with Hybrid-IR and FBP.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3