Effect of deep learning reconstruction on the assessment of pancreatic cystic lesions using computed tomography

Author:

Kanzawa Jun,Yasaka KoichiroORCID,Ohizumi Yuji,Morita Yuichi,Kurokawa Mariko,Abe Osamu

Abstract

AbstractThis study aimed to compare the image quality and detection performance of pancreatic cystic lesions between computed tomography (CT) images reconstructed by deep learning reconstruction (DLR) and filtered back projection (FBP). This retrospective study included 54 patients (mean age: 67.7 ± 13.1) who underwent contrast-enhanced CT from May 2023 to August 2023. Among eligible patients, 30 and 24 were positive and negative for pancreatic cystic lesions, respectively. DLR and FBP were used to reconstruct portal venous phase images. Objective image quality analyses calculated quantitative image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) using regions of interest on the abdominal aorta, pancreatic lesion, and pancreatic parenchyma. Three blinded radiologists performed subjective image quality assessment and lesion detection tests. Lesion depiction, normal structure illustration, subjective image noise, and overall image quality were utilized as subjective image quality indicators. DLR significantly reduced quantitative image noise compared with FBP (p < 0.001). SNR and CNR were significantly improved in DLR compared with FBP (p < 0.001). Three radiologists rated significantly higher scores for DLR in all subjective image quality indicators (p ≤ 0.029). Performance of DLR and FBP were comparable in lesion detection, with no statistically significant differences in the area under the receiver operating characteristic curve, sensitivity, specificity and accuracy. DLR reduced image noise and improved image quality with a clearer depiction of pancreatic structures. These improvements may have a positive effect on evaluating pancreatic cystic lesions, which can contribute to appropriate management of these lesions.

Funder

The University of Tokyo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3