Deep-Learning Reconstruction of High-Resolution CT Improves Interobserver Agreement for the Evaluation of Pulmonary Fibrosis

Author:

Hamada Akiyoshi1,Yasaka Koichiro1ORCID,Hatano Sosuke1,Kurokawa Mariko1,Inui Shohei1ORCID,Kubo Takatoshi1,Watanabe Yusuke1ORCID,Abe Osamu1ORCID

Affiliation:

1. Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan

Abstract

Objective: This study aimed to investigate whether deep-learning reconstruction (DLR) improves interobserver agreement in the evaluation of honeycombing for patients with interstitial lung disease (ILD) who underwent high-resolution computed tomography (CT) compared with hybrid iterative reconstruction (HIR). Methods: In this retrospective study, 35 consecutive patients suspected of ILD who underwent CT including the chest region were included. High-resolution CT images of the unilateral lung with DLR and HIR were reconstructed for the right and left lungs. A radiologist placed regions of interest on the lung and measured standard deviation of CT attenuation (i.e., quantitative image noise). In the qualitative image analyses, 5 blinded readers assessed the presence of honeycombing and reticulation, qualitative image noise, artifacts, and overall image quality using a 5-point scale (except for artifacts which was evaluated using a 3-point scale). Results: The quantitative and qualitative image noise in DLR was remarkably reduced compared to that in HIR ( P < .001). Artifacts and overall DLR quality were significantly improved compared to those of HIR ( P < .001 for 4 out of 5 readers). Interobserver agreement in the evaluations of honeycombing and reticulation for DLR (0.557 [0.450-0.693] and 0.525 [0.470-0.541], respectively) were higher than those for HIR (0.321 [0.211-0.520] and 0.470 [0.354-0.533], respectively). A statistically significant difference was found for honeycombing ( P = .014). Conclusions: DLR improved interobserver agreement in the evaluation of honeycombing in patients with ILD on CT compared to HIR.

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3