Detection of Vertebral Mass and Diagnosis of Spinal Cord Compression in Computed Tomography With Deep Learning Reconstruction: Comparison With Hybrid Iterative Reconstruction

Author:

Fujita Nana1,Yasaka Koichiro1ORCID,Watanabe Yusuke1ORCID,Okimoto Naomasa1,Konishiike Mao1,Abe Osamu1ORCID

Affiliation:

1. Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan

Abstract

Purpose To compare the impact of deep learning reconstruction (DLR) and hybrid-iterative reconstruction (hybrid-IR) on vertebral mass depiction, detection, and diagnosis of spinal cord compression on computed tomography (CT). Methods This retrospective study included 29 and 20 patients with and without vertebral masses. CT images were reconstructed using DLR and hybrid-IR. Three readers performed vertebral mass detection tests and evaluated the presence of spinal cord compression, the depiction of vertebral masses, and image noise. Quantitative image noise was measured by placing regions of interest on the aorta and spinal cord. Results Deep learning reconstruction tended to improve the performance of readers with less diagnostic imaging experience in detecting vertebral masses (area under the receiver operating characteristic curve [AUC] = .892-.966) compared with hybrid-IR (AUC = .839-.917). Diagnostic performance in evaluating spinal cord compression in DLR (AUC = .887-.995) also improved compared with that in hybrid-IR (AUC = .866-.942) for some readers. The depiction of vertebral masses and subjective image noise in DLR were significantly improved compared with those in hybrid-IR ( P < .041). Quantitative image noise in DLR was also significantly reduced compared with that in hybrid-IR ( P < .001). Conclusion Deep learning reconstruction improved the depiction of vertebral masses, which resulted in a tendency to improve the performance of CT compared to hybrid-IR in detecting vertebral masses and diagnosing spinal cord compression for some readers.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3