Gelatin-based cellular solids: Fabrication, structure and properties

Author:

Torrejon Virginia Martin123ORCID,Song Jim4,Yu Zhang5,Hang Song4

Affiliation:

1. Media and Communication School, Shenzhen Polytechnic, Shenzhen, China

2. Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an, China

3. Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China

4. School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, China

5. Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an, China

Abstract

Although most cellular polymers are made from thermoplastics using different foaming technologies, gelatin and many other natural polymers can form hydrogels and convert them to cellular solids using various techniques, many of which differ from traditional plastic foaming, and so does their resulting structures. Cellular solids from natural hydrogels are porous materials that often exhibit a combination of desirable properties, including high specific surface area, biochemical activity, as well as thermal and acoustic insulation properties. Among natural hydrogels, gelatin-based porous materials are widely explored due to their availability, biocompatibility, biodegradability and relatively low cost. In addition, gelatin-based cellular solids have outstanding properties and are currently subject to increasing scientific research due to their potential in many applications, such as biocompatible cellular materials or biofoams to facilitate waste treatment. This article aims at providing a comprehensive review of gelatin cellular solids processing and their processing-properties-structure relationship. The fabrication techniques covered include aerogels production, mechanical foaming, blowing agents use, 3D printing, electrospinning and particle leaching methods. It is hoped that the assessment of their characteristics provides compiled information and guidance for selecting techniques and optimization of processing conditions to control material structure and properties to meet the needs of the finished products.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3