Affiliation:
1. Mechanics Program, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Izmir, Turkey
2. Department of Mechanical Engineering, Dokuz Eylül University, Izmir, Turkey
Abstract
Nowadays, fiber reinforced laminated composites are widely used in many applications due to their high strength/weight ratio. However, these materials are very sensitive to transverse loading. The low-velocity impact test has been widely used by researchers to simulate the transverse loading. However, the low-velocity impact tests are highly toilsome, and this test requires expensive hardware and software systems. To reduce the experimental costs of the low-velocity impact test, it will be more attractive, much simpler, cheaper and more widely available to achieve impact behavior using quasi-static tests. Thus, to compare both tests, in this work the absorbed energy and force-deflection curves obtained by low-velocity impact and quasi-static indentation loading in two different fiber reinforced epoxy composites have been investigated. The Carbon-Kevlar hybrid fabrics and S2 glass fabrics were used as reinforcements. For low-velocity impact tests, a range of energies was used between 20 and 80 J. For quasi-static indentation test, the crosshead speeds were increased gradually from 1 mm/min to 60 mm/min. In addition, tests at 23°C, 40°C, 60°C and 80°C were made to examine the effect of temperature on these tests. As a result of the quasi-static tests performed, the amount of energy required to perforate the samples at a certain test speed is at the same level as the low-velocity impact test. Thus, the required energy amount for the perforation of the materials can be found by performing a quasi-static test at an appropriate speed, rather than the low-velocity impact test.
Subject
Materials Chemistry,Polymers and Plastics,Ceramics and Composites
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献