Low-velocity impact characterization of multistitched woven E-glass/polyester nano/micro composites

Author:

Bilisik Kadir1,Yolacan Gaye1

Affiliation:

1. Department of Textile Engineering, Faculty of Engineering, Erciyes University, Turkey

Abstract

The low-velocity impact properties of the developed two-dimensional multistitched/micro/nano E-glass/polyester woven composites were studied. It was observed that material type (silicate or carbon or metal), material particle size (nano or micro), amount of materials (weight, %), stitching density (step/cm) and stitching type (hand or machine) influenced the damaged areas of composites. The unstitched/nano and unstitched/micro E-glass/polyester woven composites had small damaged areas in the front face but they had large damaged areas in the back face. The multistitched structure had also a small damaged area in the front face; however, it had a very small damaged area in the back face. The results indicated that the multistitching suppressed the impact energy relatively at a small area. Therefore, the two-dimensional multistitched and multistitched/nano E-glass/polyester woven composite structures showed a better damage resistance performance compared to those of the unstitched or unstitched/nano composites.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3