Experimental determination of bending behavior of multilayered and multidirectionally-stitched E-Glass fabric structures for composites

Author:

Bilisik Kadir1,Yolacan Gaye1

Affiliation:

1. Department of Textile Engineering, Faculty of Engineering, Erciyes University, Talas-Kayseri, Turkey.

Abstract

The aim of this study was to experimentally determine the bending behavior of developed multilayered multistitched E-Glass preform structures. For this reason, a bending rigidity test instrument based on the cantilever test principle was used. A bending rigidity test was conducted on all developed multilayered multistitched E-Glass preform structures. Yarn linear density and fabric density influenced the bending rigidity of single layer E-Glass fabric. The single layer fabric's bending rigidity depended on the off-axis angle orientations in the fabric plane. On the other hand, the bending rigidity of the multilayered unstitched E-Glass fabric structure depended on the number of fabric layers. The bending rigidities of the multilayered four directional hand and machine stitched E-Glass preform structures were high compared with one and two directional hand and machine stitched E-Glass preform structures. The bending rigidities of all heavy (6 step/cm) machine stitched E-Glass preform structures were high compared with light (2 step/cm) machine and hand (1 step/cm) stitched E-Glass preform structures. In addition, the bending rigidities of all developed multilayered hand and machine stitched E-Glass preform structures were higher than those of unstitched preform structures due to stitching. In addition, the multilayered multistitched preform structures showed a low order of bending curvatures compared with the multilayered unstitched preform structures. The results indicated that the number of stitching directions and stitching steps substantially affected the bending rigidity of the developed preform structures. Stitching yarn type was also a parameter for the bending behaviorof the multistitched preform structures. It was considered that the unstitched fabric structure could be easily formed whereas the directional stitched E-Glass preform structure became stiff and could not be easily formed.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3