Fabrication of chitosan/polycaprolactone/Myrtus communis L. extract nanofibrous mats with enhanced antibacterial activities

Author:

Modiri-Delshad Tayebeh1,Ramazani Ali12ORCID,Khoobi Mehdi34,Akbari Javar Hamid5,Akbari Tayebeh6,Amin Mohsen478

Affiliation:

1. Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran

2. Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan, Iran

3. Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

4. Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran

5. Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran

6. Department of Microbiology, Islamic Azad University, Tehran, Iran

7. Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

8. Pharmaceutical Microbiology Group (TIPS), The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Development of novel antimicrobial phytochemical-bearing nanofibrous mats could be considered as a promising strategy to overcome against antibiotic resistance in wound healing. In this work, the electrospinning process was used to successfully create novel antimicrobial nanofiber mats made of a blend of electrospun chitosan/polycaprolactone (CS/PCL) loaded with M. communis leaf extract (MCLE) (15 and 30 wt.%). Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) analysis, water contact angle (WCA) testing, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and mechanical properties testing were applied to evaluate physicochemical properties of the nanofiber mats. The FESEM images showed uniform, bead-free, and smooth nanofiber mats with good compatibility between MCLE and polymers. Image J software was used to calculate the average diameters of nanofibrous mats, and the average diameter increased significantly as the extract concentration increased. The existence of MCLE in the nanofibrous mats was verified by ATR-FTIR spectroscopy and XRD analysis. The tensile strength of the nanofiber mats was satisfactory (6.31–12.47 MPa). The incorporation of MCLE in CS/PCL nanofibers enhanced the scaffold’s hydrophilicity, as evidenced by a reduction in contact angle. Significant reduction up to 0.5 log of both Escherichia ( E.) coli and Staphylococcus aureus count was observed upon exposure to CS/PCL nanofibers. The MCLE (15 and 30 wt.%)-incorporated CS/PCL nanofibers demonstrated a significant reduction of bacterial count up to 0.8 log for both bacteria. The results demonstrated that manufactured nanofibers could be considered as a promising dressing in wound dressing.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3