Design, Preparation, and Characterization of Polycaprolactone–Chitosan Nanofibers via Electrospinning Techniques for Efficient Methylene Blue Removal from Aqueous Solutions

Author:

Saleh Hind M.1,Albukhaty Salim12ORCID,Sulaiman Ghassan M.3ORCID,Abomughaid Mosleh M.4ORCID

Affiliation:

1. Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq

2. College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq

3. Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq

4. Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia

Abstract

The effective removal of organic dyes from aqueous solutions is of paramount importance in addressing environmental pollution challenges. Methylene blue (MB), a prevalent cationic dye in various industries, has raised concerns due to its persistence and potential adverse effects on ecosystems. This study explores the design, preparation, and characterization of Polycaprolactone–Chitosan (PCL–CH) nanofibers via electrospinning for the removal of MB. PCL, known for its biodegradability and mechanical properties, serves as the primary matrix, while chitosan (CH), with its biocompatibility and amino functionalities, offers enhanced adsorption potential. The electrospinning process yields nanofibers with tailored compositions and controlled morphology. The synthesized nanofibers are systematically characterized, encompassing structural analysis by Fourier transform infrared (FT–IR), spectroscopy, morphology, and composition assessment via Field emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS), zeta potential, as well as rheological behavior evaluation. The adsorption uptake of MB onto these nanofibers is investigated, considering the influence of solution pH and initial dye concentration. The results reveal significant enhancements in adsorption capacity, especially with the incorporation of CH, with the PCL–CH 30% nanofibers exhibiting outstanding performance. The pH-dependent behavior underscores the importance of environmental factors in the adsorption process, while higher dye concentrations provide a stronger driving force for adsorption. These findings position PCL–CH nanofibers as promising adsorbents for the efficient removal of MB and potentially other organic contaminants from aqueous solutions. The study contributes to the development of sustainable materials for environmental remediation, wastewater treatment, and related applications, aligning with ongoing efforts to address water pollution challenges.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3