Tales of Two Channels: Digital Advertising Performance Between AI Recommendation and User Subscription Channels

Author:

Dong Beibei,Zhuang MengzhouORCID,Fang Eric (Er),Huang Minxue

Abstract

Although in-feed advertising is popular on mainstream platforms, academic research on it is limited. Platforms typically deliver organic content through two methods: subscription by users or recommendation by artificial intelligence. However, little is known about the ad performance between these two channels. This research examines how the performance of in-feed ads, in terms of click-through rates and conversion rates, differs between subscription and recommendation channels and whether these effects are mediated by ad intrusiveness and moderated by ad attributes. Two ad attributes are investigated: ad appeal (informational vs. emotional) and ad link (direct vs. indirect). Study 1 finds that the recommendation channel generates higher click-through rates but lower conversion rates than the subscription channel, and these effects are amplified by informational ad appeal and direct ad links. Study 2 explores channel differences, revealing that the recommendation channel yields less source credibility and content control, reducing consumer engagement with organic content. Studies 3 and 4 validate the mediating role of ad intrusiveness and rule out ad recognition as an alternative explanation. Study 5 uses eye-tracking technology to show that the recommendation channel has lower content engagement, lower ad intrusiveness, and greater ad interest.

Funder

Early Career Scheme of the Research Grants Council of Hong Kong

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Marketing,Business and International Management

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3