Vibration and stability analyses of rotor–bearing-casing system in an axial piston pump subjected to bearing faults

Author:

Wu ZhuJin1,Tang Hesheng12ORCID,Ying Pingting1,Ren Yan1ORCID,Kumar Anil1ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, P.R. China

2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, P.R. China

Abstract

Healthy roller bearings are essential for the safe performance of axial piston pumps. A dynamic failure model of a rotor–bearing-casing system was developed to investigate the effect of bearing damage on the vibration characteristics and stability. This model considers the effect of large-gap circulation on a wet rotor system model, which is closely related to the stirring conditions during actual operation of axial piston pumps. The stator and rotor of the pump were modelled using the centralised parameter technique and finite element method, which were combined to develop the rotor–bearing-casing model. Vibration and stability analyses were performed for the system model with bearing failure, considering the gap annular flow and hydraulic excitation force. The effects of the mass eccentricity, rotational speed, and discharge pressure on the vibration characteristics and stability were analysed under different types of bearing failures. Furthermore, the vibration behaviour of the rotor–bearing-casing system with a bearing fault was measured to validate the established dynamic model. The results indicated that the rotational speed and rotor eccentricity affected the churning and unbalanced effects of the rotor. With an increase in the rotor eccentricity, the rotor first transitioned from nonlinear motion to one-period motion and subsequently to periodic motion. The rotor energy reduction and steady state of the rotor–bearing-casing system were induced by the rotor churning action. As the annular gap decreased, churning losses increased, resulting in a more stable rotor motion.

Funder

Zhejiang Provincial Natural Science Foundation of China

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems

Wenzhou Major Science and Technology Innovation Project of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3