Classical Machine Learning Methods in Economics Research: Macro and Micro Level Examples

Author:

Babenko Vitalina1,Panchyshyn Andriy2,Zomchak Larysa2,Nehrey Maryna3,Artym-Drohomyretska Zoriana2,Lahotskyi Taras4

Affiliation:

1. Department of International Е-commerce and Hotel&restaurant Business, V.n. Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, 61022, Ukraine

2. Department of Economic Cybernetics, Ivan Franko National University of Lviv, Universytetska Street, 1, Lviv, 79000, Ukraine

3. Department of Economic Cybernetics, National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Street, 15, Kyiv, 03041, Ukraine

4. Department of Economic Cybernetics, Ivan Franko National University of Lviv, Universytetska Street, 1, Lviv, 79000. Ukraine

Abstract

Paper reviews the classical methods of machine learning (supervised and unsupervised learning),gives examples of the application of different methods and discusses approaches that will be useful for empiricaleconomics research (on data from Ukrainian firms, banks and official state statistics). The different sectors ofeconomics are investigated: the multiple linear regression is used on macrolevel for macro production functionof Ukraine specification; logistic regression is used in bank sector for credit risk management with the scoringmodel; k-means, hierarchic clustering and DBSCAN are used in regional level for regions of Ukraine groupingbased on competitiveness; principal component analysis is used for firm’s financial stability analysis. All modelsshowed adequate simulation results according to the quality criteria of the models. So, the possibility ofclassic machine learning methods application for investigations of the processes and objects on different levelsof economics (micro, mezzo and macro) is demonstrated in the article.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Economics and Econometrics,Finance,Business and International Management

Reference26 articles.

1. https://www.investopedia.com/terms/m/machine-learning.asp, last accessed 2020/04/01.

2. Ghoddusi, H., Creamer, G. G., & Rafizadeh, N.(2019) Machine learning in energy economicsand finance: A review. Energy Economics, 81,709-727.

3. Nehrey, M., & Hnot, T. (2019). Data ScienceTools Application for Business ProcessesModelling in Aviation. In Shmelova, T., Sikirda,Y., Rizun, N., & Kucherov, D. (Ed.), Cases onModern Computer Systems in Aviation (pp.176-190). IGI Global. http://doi:10.4018/978-1-5225-7588-7.ch006.

4. Newell, R. G., Prest, B. C., Sexton, S. E.: TheGDP-temperature relationship: implications forclimate change damages. Resour. Future Work.Pap. (2018).

5. Volkova, N. P., Rizun, N. O., & Nehrey, M. V.(2019) Data science: opportunities to transformeducation. In Proceedings of the 6th Workshopon Cloud Technologies in Education (CTE2018), No. 2433, pp. 48-73. CEUR WorkshopProceedings.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3