A non-linear SVR-based cascade model for improving prediction accuracy of biomedical data analysis

Author:

Izonin Ivan1,Tkachenko Roman2,Gurbych Olexander1,Kovac Michal3,Rutkowski Leszek456,Holoven Rostyslav7

Affiliation:

1. Department of Artificial Intelligence, Institute of Computer Sciences and Information Technologies, Lviv Polytechnic National University, Lviv, Ukraine

2. Department of Publishing Information Technologies, Institute of Computer Sciences and Information Technologies, Lviv Polytechnic National University, Lviv, Ukraine

3. Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovak Republic

4. Systems Research Institute of the Polish Academy of Sciences, Warsaw, Poland

5. AGH University of Science and Technology, Krakow, Poland

6. Information Technology Institute, University of Social Sciences, Lodz, Poland

7. Department of System Design, Ivan Franko National University of Lviv, Lviv, Ukraine

Abstract

<abstract> <p>Biomedical data analysis is essential in current diagnosis, treatment, and patient condition monitoring. The large volumes of data that characterize this area require simple but accurate and fast methods of intellectual analysis to improve the level of medical services. Existing machine learning (ML) methods require many resources (time, memory, energy) when processing large datasets. Or they demonstrate a level of accuracy that is insufficient for solving a specific application task. In this paper, we developed a new ensemble model of increased accuracy for solving approximation problems of large biomedical data sets. The model is based on cascading of the ML methods and response surface linearization principles. In addition, we used Ito decomposition as a means of nonlinearly expanding the inputs at each level of the model. As weak learners, Support Vector Regression (SVR) with linear kernel was used due to many significant advantages demonstrated by this method among the existing ones. The training and application procedures of the developed SVR-based cascade model are described, and a flow chart of its implementation is presented. The modeling was carried out on a real-world tabular set of biomedical data of a large volume. The task of predicting the heart rate of individuals was solved, which provides the possibility of determining the level of human stress, and is an essential indicator in various applied fields. The optimal parameters of the SVR-based cascade model operating were selected experimentally. The authors shown that the developed model provides more than 20 times higher accuracy (according to Mean Squared Error (MSE)), as well as a significant reduction in the duration of the training procedure compared to the existing method, which provided the highest accuracy of work among those considered.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3