Abstract
INTRODUCTION: The task of approximation of complex nonlinear dependencies, especially in the case of short datasets, is important in various applied fields of medicine. Global approximation methods describe the generalized behavior of the model, while local methods explain the behavior of the model at specific data points. Global-local approximation combines both approaches, which makes such methods a powerful tool for processing short sets of medical data that can have both broad trends and local variations.OBJECTIVES: This paper aims to improve the method of sequential obtaining global and local components of the response surface to increase the accuracy of prediction in the case of short sets of medical data.METHODS: In this paper, the authors developed a new method that combined two ANNs: a non-iterative SGTM neural-like structure for obtaining the global component and GRNN as a powerful tool of local approximation in the case of short datasets.RESULTS: The authors have improved the method of global-local approximation due to the use of a General Regression Neural Network instead of RBF ANN for obtaining the local component, which ensured an increase in the accuracy of the body fat prediction task. The authors optimized the operation of the method and investigated the efficiency of the sequential obtaining global and local components of the response surface in comparison with the efficiency using a number of existing methods.CONCLUSION: The conducted experimental studies for solving the body fat prediction task showed the high efficiency of using the improved method in comparison with a number of existing methods, including ensemble methods.
Publisher
European Alliance for Innovation n.o.
Subject
Health Informatics,Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献