Fault Identification in Modified Hybrid Digital Pulse Width Modulation using Triple Modular Redundancy

Author:

Jegadeeshwari P.1,Kirubakaran N.2,Bharath S.3,Nalinashini G.1,Mahalakshmi G.4,Sabhan Deborah1

Affiliation:

1. Department of Electronics and Communication Engineering, Dr .MGR Research and Educational Institute, Tamil Nadu, INDIA

2. Department of Computer Science and Business Science, Chennai Institute of Technology, Tamil Nadu, INDIA

3. Department of Electronics and Communication Engineering, Rajalakshmi Institute of Technology, Tamil Nadu, INDIA

4. Department of Electronics and Communication Engineering CK College of Engineering and Technology, Tamil Nadu, INDIA

Abstract

In this paper, the fault analysis is performed for the identification in the Modified Hybrid Digital Pulse Width Modulation by making use of the Triple Modular Redundancy method. The developed algorithm is real time implemented using the Xilinx Artix 7 FPGA device. The Modified Hybrid Digital Pulse Width Modulation is designed for the purpose of minimizing the Turn-ON and Turn-OFF delays in the triggering event of the generated Digital Pulse Width Modulation. Though additional compensatory circuits are added for the delay reduction, the area utilization is still low when implemented in FPGA device. Also, the Triple Modular Redundancy consists of three times of MHDPWM signal generation to check for the fault occurrence. For the sake of validating the fault identification, the majority voter circuit is used that could find the error at the earliest. The proposed method is checked for errors by inducing within the VHDL code and trailed with multiple duty cycle values. The proposed fault identification method is validated for VLSI parameters such as area, delay and power.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3