A Fault Tolerant Voter for Approximate Triple Modular Redundancy

Author:

Arifeen Tooba,Hassan Abdus,Lee Jeong-AORCID

Abstract

Approximate Triple Modular Redundancy has been proposed in the literature to overcome the area overhead issue of Triple Modular Redundancy (TMR). The outcome of TMR/Approximate TMR modules serves as the voter input to produce the final output of a system. Because the working principle of Approximate TMR conditionally allows one of the approximate modules to differ from the original circuit, it is critical for Approximate TMR that a voter not only be tolerant toward its internal faults but also toward faults that occur at the voter inputs. Herein, we present a novel compact voter for Approximate TMR using pass transistors and quadded transistor level redundancy to achieve a higher fault masking. The design also targets a better Quality of Circuit (QoC), a new metric which we have proposed for highlighting the ability of a circuit to fully mask all possible internal faults for an input vector. Comparing the fault masking features with those of existing works, the proposed voter delivered upto 45.1%, 62.5%, 26.6% improvement in Fault Masking Ratio (FMR), QoC, and reliability, respectively. With respect to the electrical characteristics, our proposed voter can achieve an improvement of up to 50% and 56% in terms of the transistor count and power delay product, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference24 articles.

1. Design of a novel fault-tolerant voter circuit for TMR implementation to improve reliability in digital circuits

2. Diagnosis and Fault-Tolerant Control;Blanke,2006

3. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance;Isermann,2006

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3