Bidirectional encoders to state-of-the-art: a review of BERT and its transformative impact on natural language processing

Author:

Gupta Rajesh

Abstract

First developed in 2018 by Google researchers, Bidirectional Encoder Representations from Transformers (BERT) represents a breakthrough in natural language processing (NLP). BERT achieved state-of-the-art results across a range of NLP tasks while using a single transformer-based neural network architecture. This work reviews BERT's technical approach, performance when published, and significant research impact since release. We provide background on BERT's foundations like transformer encoders and transfer learning from universal language models. Core technical innovations include deeply bidirectional conditioning and a masked language modeling objective during BERT's unsupervised pretraining phase. For evaluation, BERT was fine-tuned and tested on eleven NLP tasks ranging from question answering to sentiment analysis via the GLUE benchmark, achieving new state-of-the-art results. Additionally, this work analyzes BERT's immense research influence as an accessible technique surpassing specialized models. BERT catalyzed adoption of pretraining and transfer learning for NLP. Quantitatively, over 10,000 papers have extended BERT and it is integrated widely across industry applications. Future directions based on BERT scale towards billions of parameters and multilingual representations. In summary, this work reviews the method, performance, impact and future outlook for BERT as a foundational NLP technique.   We provide background on BERT's foundations like transformer encoders and transfer learning from universal language models. Core technical innovations include deeply bidirectional conditioning and a masked language modeling objective during BERT's unsupervised pretraining phase. For evaluation, BERT was fine-tuned and tested on eleven NLP tasks ranging from question answering to sentiment analysis via the GLUE benchmark, achieving new state-of-the-art results.   Additionally, this work analyzes BERT's immense research influence as an accessible technique surpassing specialized models. BERT catalyzed adoption of pretraining and transfer learning for NLP. Quantitatively, over 10,000 papers have extended BERT and it is integrated widely across industry applications. Future directions based on BERT scale towards billions of parameters and multilingual representations. In summary, this work reviews the method, performance, impact and future outlook for BERT as a foundational NLP technique.

Publisher

Krasnoyarsk Science and Technology City Hall

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3