Credit card attrition: an overview of machine learning and deep learning techniques

Author:

Wang Sihao,Chen Bolin

Abstract

Credit card churn, where customers close their credit card accounts, is a major problem for banks and other financial institutions. Being able to accurately predict churn can allow companies to take proactive steps to retain valuable customers. In this review, we examine how machine learning and deep learning techniques can be applied to forecast credit card churn. We first provide background on credit card churn and explain why it is an important problem. Next, we discuss common machine learning algorithms that have been used for churn forecasting, including logistic regression, random forests, and gradient boosted trees. We then explain how deep learning methods like neural networks and sequence models can capture more complex patterns from customer data. The available input features for churn models are also reviewed in detail. We compare the performance of different modeling techniques based on past research. Finally, we discuss open challenges and future directions for predictive churn modeling using machine learning and deep learning. Our review synthesizes key research in this domain and highlights opportunities for advancing the state-of-the-art. More robust churn forecasting can enable companies to take targeted action to improve customer retention.

Publisher

Krasnoyarsk Science and Technology City Hall

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bidirectional encoders to state-of-the-art: a review of BERT and its transformative impact on natural language processing;Информатика. Экономика. Управление - Informatics. Economics. Management;2024-03-02

2. Prediction of vasculitic neuropathy using supervised machine learning approaches;Информатика. Экономика. Управление - Informatics. Economics. Management;2024-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3